초록 |
Effects of $SiO_x$ or C shells on electrochemical properties of Si nanoparticles were investigated. $SiO_x$ shells with thickness of 10~15 nm were formed on homogeneously crystalline Si nanoparticles. Incase of Si-C nanoparticles, there were 30~40 layers of C with a number of defects. Li-ion batteries were fabricated with the above-mentioned nanoparticles, and their electrochemical properties were measured. Pristine Si shows a high IRC (initial reversible capacity) of 2,517 mAh/g and ICE (initial columbic efficiency) of 87%, but low capacity retention of 22%, respectively. $SiO_x$ shells decreased IRC (1,534 mAh/g) and ICE (54%), while the retention increased up to 65%, which can be explained by irreversible phases such as $LiO_2$ and $Li_2SiO_3$ . C shells exhibited no differences in IRC and ICE compared to the pristine Si but an enhanced retention of 54%, which might be from proper defect structures. |