초록 |
스마트 기기와 소형 디스플레이에 사용되는 디지털 영상은 다운스케일링 (Downscaling)된 영상이 사용된다. 본 논문에서는 영상 픽셀값의 경사도에 따른 특징벡터를 이용한 다운스케일링 포저리 (Forgery) 영상 검출 알고리즘을 제안한다. 제안된 알고리즘에서, 원영상의 픽셀값 경사도로부터 자기회귀 (AR: Autoregressive) 계수를 계산한다. 이는 다운스케일링 포저리 영상 검출기의 SVM (Support Vector Machine) 분류를 위한 학습에 사용된다. 제안된 다운스케일링 검출 알고리즘은 동일 10-Dim. 특징벡터의 MFR (Median Filter Residual) 스킴과 686-Dim.의 SPAM (Subtractive Pixel Adjacency Matrix) 스킴과 비교하여 다운스케일링 90% 영상 포저리에서 성능이 우수하며, 평균필터링 ( $3{ times}3$ ) 영상과 미디언필터링 ( $3{ times}3$ ) 영상에서 높은 검출율을 보여 주었다. 특히, 평균필터링과 미디언필터링 영상에서는 성능평가 전체 항목에서 민감도 (Sensitivity; TP: True Positive rate)와 1-특이도 (1-Specificity; FP: False Positive rate)의 AUC (Area Under Curve)가 모두 1에 수렴하여 'Excellent (A)' 등급임을 확인하였다. |