텍스트마이닝을 이용한 사회 이슈 찬반 분류에 관한 연구
기관명 | NDSL |
---|---|
저널명 | 한국데이터정보과학회지 = Journal of the Korean Data Information Science Society |
ISSN | 1598-9402, |
ISBN |
저자(한글) | 강선아,김유신,최상현 |
---|---|
저자(영문) | |
소속기관 | |
소속기관(영문) | |
출판인 | |
간행물 번호 | |
발행연도 | 2015-01-01 |
초록 | 정보통신기술의 발전은 SNS, 블로그, 게시판 등 자신의 생각이나 의견을 표출할 수 있는 장소의 다양성을 제공하였고 이는 빅데이터 성장을 가능케 하였다. 특히 매순간마다 엄청난 수의 사용자가 이용가능하고 다양한 이슈에 대한 의견을 작성할 수 있는 SNS의 특징으로 인해 많은 사람들이 트위터 등에 사회적 이슈에 대한 자신의 의견을 드러낸다. 따라서 본 연구에서는 트위터에서 작성되는 사회 이슈에 대한 의견을 수집하여 사회이슈를 주제로 하는 감성사전을 구축하고 구축된 감성사전을 통해 감성 분석을 실시하고자 한다. 사용된 데이터는 '비키니', '나꼼수'를 포함하는 트윗 글이다. 사회이슈에 특화된 주제지향 감성사전을 구축하고 구축된 감성사전을 통해 긍부정 의견을 분석한 결과 Precision은 61%로 나타났으며 F1-score는 74%의 성능을 보여주었다. 본 연구는 정치적 색을 띄고 있는 특정 사회 이슈에 대한 트윗 작성자의 의견이 긍정인지 부정인지 자동으로 분류할 수 있도록 하는 사전 구축의 하나의 기준을 제시할 것이라 기대한다. |
원문URL | http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201529539328694 |
첨부파일 |
과학기술표준분류 | |
---|---|
ICT 기술분류 | |
DDC 분류 | |
주제어 (키워드) | 감성 분석,감성 사전,사회이슈,오피니언 마이닝,텍스트마이닝,Opinion mining,sentimental analysis,sentimental dictionary,social issue,text mining |