기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

산사태 발생예측을 위한 지형분류기법의 비교평가

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 대한지리학회지 = Journal of the Korean Geographical Society
ISSN 1225-6633,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 이수연,정관용,박수진
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2015-01-01
초록 본 연구는 산지에서 지형분류기법을 이용하여 산사태 발생을 예측하고자 하였다. 이를 위해 Catena, Topographic Position Index(TPI), 그리고 Geomorphons 방법을 적용하였다. 연구지역은 가평군, 횡성군, 김천시, 여주시/이천시이며, 2001부터 2014년까지 군단위로 수집된 산사태 자료를 사용하였다. Catena 방법은 분류기준자가 명확하며, 지역 간 분류기준자의 객관화와 비교가 가능하고, 분류된 결과를 직관적으로 이해할 수 있다. 반면 지형분석 및 통계분석 절차가 까다로우며 자동화가 어려워 일반인이 쉽게 사용하기 힘들다는 단점이 존재한다. TPI와 Geomorphons 방법의 경우 분류절차가 간단하고, GIS에서 이용할 수 있는 프로그램이 개발되어 일반인이 쉽게 사용할 수 있다. 하지만 계산하는 방안의 크기에 따라 결과에 큰 차이를 보이고, 사용하는 지형단위가 형태적인 특성에 한정되어 지표에서 나타나는 지형형성작용과의 공간적 연결성이 비교적 낮다는 단점이 존재한다. 이 세 지형분류방법 간 호환성이 낮게 나타나, 지형분류방법이 보다 보편적으로 사용되기 위해서는 지형 단위에 대해 통일된 개념 규정이 필요하다. 각 지형분류법이 산사태를 예측하는 정도를 평가하기 위해 산사태 발생지 중 차지하는 비중이 높은 상위 50%의 지형단위를 선택한 뒤, 지형단위에서 나타나는 산사태 발생비율을 계산하여 '산사태 예측력(Predictive Ability)'이라고 정의하였다. '산사태 예측력'에 의해 구분되는 지형이 전체 지역 면적에서 차지하는 비율을 '취약지 면적(Vulnerable Area Ratio)'이라고 규정하였다. 종합적인 판단을 위해 산사태 예측력을 산사태취약지역으로 나누어 점수화한 결과, Catena 방법의 적합성이 가장 높게 나타났다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201506363291635
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 지형분류법,산사태,자연재해 예측,geomorphological classification,Catena,TPI,Geomorphons,landslide,estimation of natural disaster