기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

k-NN 알고리즘을 활용한 단기 교통상황 예측: 서울시 도시고속도로 사례

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 大韓交通學會誌 = Journal of Korean Society of Transportation
ISSN 1229-1366,2234-4217
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 김형주,박신형,장기태
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2016-01-01
초록 본 연구는 실시간 자료를 기반으로 k-NN을 활용한 단기 교통상황 예측 시 각 단계별 세부절차 및 변수결정, 입력자료 구축 등의 각 단계별 잠재적 예측오차에 대한 원인분석 및 시사점 도출을 목적으로 한다. 다양한 단기 예측모형에 대한 선행연구 검토를 통하여 k-NN 모형의 유용성을 검토하였고 이에 대한 적용가능성을 분석하였다. 본 연구의 k-NN 모형은 이력자료 평활화 및 패턴DB 구축의 입력자료 부분, 실시간 자료와 과거 이력자료와의 유사성 측정 및 k 근접이웃 결정 등의 k-NN 알고리즘 부분, 그리고 예측 시간간격에 따른 출력결과 부분 등으로 구성되며 올림픽대로 김포방향 한강대교 남단~여의상류IC 구간을 대상으로 분석을 실시하였다. 교통자료의 불규칙 잡음으로 인하여 정확한 패턴매칭을 위해서 이력자료의 평활화를 실시하였으며, 이력자료 패턴 DB는 일반 및 이벤트 상황으로 구분하여 활용하였다. 최적의 시계열 자료 및 k 근접이웃 결정을 위해서 시행착오 방법을 적용하였으며, 단기 교통상황 예측 시 예측 시간간격이 증가할수록 예측오차가 증가하는 패턴, 그리고 교통상태가 급변하는 시점에서도 예측오차가 증가함을 알 수 있었다. 본 연구의 k-NN 모형에 대한 각 단계별 예측오차에 대한 원인을 분석하여 개선방향을 제시함으로써 향후 신뢰성 있는 단기 교통상황예측 정보제공 및 시스템에 활용이 가능할 것으로 판단된다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201616853627138
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 이벤트 상황,이력자료,k-최대근접이웃,단기예측,실시간자료,event condition,historical data,k-nearest neighbor,short-term prediction,real-time data