기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

인공신경망을 이용한 BTX 농도 측정에 관한 연구

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 한국산학기술학회논문지 = Journal of the Korea Academia-Industrial cooperation Society
ISSN 1975-4701,2288-4688
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 정영창,김동진,홍철호,이장훈,권혁구
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2004-01-01
초록 휘발성유기 화합물(Vo1ati1e Organic Compounds : VOCs)은 탄화수소 화합물을 총칭한다. 이는 오존 및 광화학 스모그의 원인물질일 뿐 아니라 인체에는 암을 유발시키는 유해 물질이다. 또한 대기 중 악취 물질로서 환경 및 건강에 영향을 초래하는 유해성 물질이다. 본 논문은 대기 중에 포함된 암을 유발시키는 유해성 물질인 BTX(Benzene, Toluene, Xylene)의 존재 유무와 농도 측정에 대해서 연구하였다. 다종의 가스센서를 어레이하여 BTX 가스를 측정하고 인공신경망(Artificial Neural Network : ANN)의 역전파(Back propagation : BP) 알고리즘으로 시뮬레이션과 실험을 통해 농도를 추론하였다. ANN모듈은 기준 데이터를 시뮬레이션을 통해 학습시키고, 가스를 주입하여 실험 할 때 학습된 델타 모델에 근거하여 추론을 할 수 있는 추론 알고리즘 모듈이다. 이 모듈은 기준데이터를 MATLAB 코드로 시뮬레이션을 하여 생성된 parameter를 가지고 수행했으며, 시뮬레이션 결과를 실험을 통해 비교 테스트하여 검증하였다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO200411922315329
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) VOCs,Sensor array,ANN