기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

특이값 분해를 이용한 라만 스펙트럼 고속 탐색 알고리즘

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 한국산학기술학회논문지 = Journal of the Korea Academia-Industrial cooperation Society
ISSN 1975-4701,2288-4688
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 서유경,백성준,고대영,박준규,박아론
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2015-01-01
초록 본 논문에서는 라만 스펙트럼의 고속 탐색을 위해 특이값 분해(SVD, Singular Value Decomposition)를 이용한 새로운 탐색 알고리즘들을 제안한다. 제안 알고리즘에서는 SVD를 통해 얻은 특이벡터를 중요도에 따라 선별하여 실험에 사용함으로써 계산량 단축을 도모한다. 파일럿 테스트(Pilot test)를 수행하여 일부 데이터들을 미리 탐색 대상에서 제외시키고 부분탐색법(PDS, Partial Distance Search)을 적용하여 탐색을 수행함으로써 큰 폭으로 계산량을 감소시킨다. 실험에 사용한 데이터베이스는 총 14,032종의 화학 물질 라만 스펙트럼으로 구성하였으며, 기존의 탐색 방법인 전체탐색법(Full Search), PDS와 평균피라미드탐색법(MPS, Mean Pyramid Search)를 1차원공간상의 신호에 적용하기 적절하게 변형한 1DMPS에 PDS를 적용한 실험(1DMPS+PDS), 데이터의 분산을 내림차순 정렬하여 !DMPS와 PDS를 적용한 실험(1DMPS Sort with Variance+PDS), 데이터의 250차원 성분만 SVD 변환하여 PDS를 적용한 실험(250SVD+PDS), 그리고 제안 알고리즘 PSP(Partial SVD with PDS)와 PSSP(Partial SVD with Sorted Pilot test)을 적용한 실험을 비교 분석하였다. 각 알고리즘의 성능은 곱셈 및 덧셈의 연산량 비교를 통해 이루어졌는데, 실험 결과에 따르면 250SVD+PDS에 비해 제안알고리즘 PSP는 15.7%, PSSP에서는 64.8%의 계산량 감소를 확인하였다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201504641501284
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) Fast searh algorithm,partial distance search,Raman spectrum,singular value decomposition