초록 |
본 연구에서는 MFSFET (Metal-Ferroelectric-Semiconductor FET) 소자의 모델링을 바탕으로 적응형 학습회로를 설계하고, 그 수치적인 결과를 분석하였다. 적응형 학습회로에서 출력주파수는 MFSFET 소자의 소스-드레인 저항과 캐패시턴스에 반비례하는 특성을 보여주었다. Short pulse 수에 따른 포화드레인 전류곡선은 강유전체의 분극반전 특성과 유사함을 확인할 수 있었고, 이는 강유전체 분극이 MFSFET 소자의 드레인 전류조절에 핵심적인 요소로 작용한다는 사실을 의미한다. 다음으로 MFSFET 소자의 소스-드레인 저항으로부터 dimensionality factor와 적응형 학습회로의 펄스 수에 따른 출력주파수 변화를 분석하였다. 이 특성으로부터 입력펄스의 진행에 따라 출력펄스의 점진적인 주파수 변화를 의미하는 적응형 학습 특성을 명확하게 확인할 수 있었고, 미래 뉴럴 네트워크에서 본 회로가 뉴런의 시넵스 부분에 효과적으로 사용될 수 있음을 입증하였다. |