초록 |
이 논문에서는 비유사도-기반 분류(dissimilarity-based classifications: DBC)를 효율적으로 수행할 수 있는 차원 축소 방법들을 비교 평가한 실험 결과를 보고한다. DBC에선 분류를 위해 대상 물체를 측정한 결과 값들(특징 요소들의 집합)을 이용하는 대신에 각 대상 물체들 사이의 비유사도를 측정하여 분류한다. 현재 DBC와 관련된 이슈들 중의 하나는 대규모 데이터를 취급할 경우에 비유사도 공간의 차원이 고차원으로 되는 문제가 있다. 이 문제를 해결하기 위하여 현재 프로토타입 선택(prototype selection: PS)방법이나 차원 축소(dimension reduction: DR)방법을 이용하고 있다. PS는 전체 학습 데이터에서 프로토타입을 추출하여 비유사도 공간을 구성하는 방법이고, DR은 전체 학습 데이터로 먼저 비유사도 공간을 구성한 다음 이 공간의 차원을 축소하는 방법이다. 이 논문에서는 PS이나 DR 대신에, 학습 데이터에 대한 주성분 분석으로 적절한 차원의 고유 공간 (Eigen space: ES)을 구성한 다음, 이 고유 공간으로 매핑 된 벡터들 사이의 $l_p$ -놈(norm) 거리를 비유사도 거리로 측정하여 이용하는 DBC를 제안한다. 인터넷에 공개된 인공 및 실세계 데이터를 이용하여 최 근방 이웃 분류규칙으로 ES에서 수행한 DBC의 분류 성능을 측정한 결과, 고유공간의 차원을 적절하게 선정하였을 경우 PS와 DR를 이용한 DBC보다 분류 성능이 더 향상되었음을 확인하였다. |