IRFP-tree(Intersection Rule Based FP-tree): 메모리 효율성을 향상시키기 위해 교집합 규칙 기반의 패러다임을 적용한 FP-tree
기관명 | NDSL |
---|---|
저널명 | 정보처리학회논문지. KIPS transactions on software and data engineering. 소프트웨어 및 데이터 공학 |
ISSN | 2287-5905, |
ISBN |
저자(한글) | |
---|---|
저자(영문) | |
소속기관 | |
소속기관(영문) | |
출판인 | |
간행물 번호 | |
발행연도 | 2016-01-01 |
초록 | 대용량 데이터베이스의 빈도패턴 분석을 위해 기존의 Apriori 방식의 단점을 보완할 수 있는 새로운 트리 기반의 빈도 패턴 분석 알고리즘이 최근 다양하게 연구되고 있다. 그 중 FP-tree는 이러한 빈도 패턴을 분석하기 위해 빈도 패턴을 표현하는 트리 구조로 단 두 번의 전체 데이터베이스 스캔을 통해 빠르게 트리를 구성할 수 있으며 FP-grwoth를 통해 빈도 패턴을 분석할 수 있다. 이처럼 빈도 패턴 트리의 노드 수는 트리 자체의 메모리 할당량과도 연관이 있지만 그 후 growth의 메모리 자원 소비 및 처리 속도에도 영향을 미치게 된다. 따라서 빈도 패턴 트리의 노드 수의 감소는 트리 자체뿐만 아니라 빈도 패턴 분석에 있어서도 매우 중요하다. 하지만 FP-tree는 전체 아이템 수 라는 고정된 기준 문제로 인해 충분한 노드 수의 압축률을 갖지 못하고 있다. 본 논문에서는 이러한 FP-tree의 문제를 보완하여 좀 더 노드 수를 감소시킬 수 있도록 교집합 규칙이라는 새로운 패러다임을 적용한 빈도 패턴 트리인 IRFP-tree를 제시하고 실험을 통해 그 성능에 대해 증명하였다. |
원문URL | http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201611962637753 |
첨부파일 |
과학기술표준분류 | |
---|---|
ICT 기술분류 | |
DDC 분류 | |
주제어 (키워드) | 빅 데이터 분석,데이터 마이닝,빈도패턴분석,Big Data Analysis,Data Mining,Frequent Pattern Analysis,FP-Tree,DRFP-Tree |