기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

인공 신경망에 의한 6개 어종의 음향학적 식별

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 한국수산과학회지 = Korean journal of fisheries and aquatic sciences
ISSN 0374-8111,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글)
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2016-01-01
초록 The objective of this study was to develop an artificial neural network (ANN) model for the acoustic identification of commercially important fish species in Korea. A broadband echo acquisition and processing system operating over the frequency range of 85-225 kHz was used to collect and process species-specific, time-frequency feature images from six fish species: black rockfish Sebastes schlegeli, black scraper Thamnaconus modesutus [K], chub mackerel Scomber japonicus, goldeye rockfish Sebastes thompsoni, konoshiro gizzard shad Konosirus punctatus and large yellow croaker Larimichthys crocea. An ANN classifier was developed to identify fish species acoustically on the basis of only 100 dimension time-frequency features extracted by the principal components analysis (PCA). The overall mean identification rate for the six fish species was 88.5%, with individual identification rates of 76.6% for black rockfish, 82.8% for black scraper, 93.8% for chub mackerel, 90.6% for goldeye rockfish, 96.9% for konoshiro gizzard shad and 90.6% for large yellow croaker, respectively. These results demonstrate that individual live fish in well-controlled environments can be identified accurately by the proposed ANN model.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201616534139420
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) Fish species identification,Time-frequency image,Artificial neural network,Principal components analysis,Confusion matrix