초록 |
현재 국내 대부분의 토목 건축 구조물이 BIM 정보가 부재한 상황에서 준공 BIM(as-built BIM)의 수요가 점차 증가하고 있다. 준공 BIM 구축을 위한 공간자료 취득에는 고밀도의 포인트 클라우드를 생성할 수 있는 레이저 스캐너가 주로 활용되고 있다. 하지만 기존의 고정식 스캔 시스템은 이동이 번거롭고, 정밀한 위치 선정이 필요 하며, 스캔 자료 정합을 위해 별도의 표지를 설치하거나 공액점을 추출하는 과정이 필요하다. 본 연구에서는 수작업을 최소화하기 위해 기존의 고정식 스캔 시스템을 대체할 수 있는 이동식 스캔 시스템을 제안하고자 하며, 기반 기술로 graph-based SLAM을 적용하였다. 테스트 장비는 총 세 개의 2차원 스캐너를 탑재하고 있으며, 중앙의 한 개는 수평으로 설치되어 graph 구축을 통한 이동경로취득에 사용되었고, 좌우 두 개는 수직으로 설치되어 시스템 진행의 연직 방향으로 주변 구조물에 대한 3차원 스캔 정보 취득에 사용되었다. 개발된 graph-based SLAM은 이동경로 상에 누적된 위치오차를 해소하기 위한 loop closure 처리 방법으로 Adaboost 기계학습을 적용하였다. 이는 특히 본 연구에서 사용한 장비와 같이 기계학습을 위한 다수의 feature 정보를 제공할 수 있는 멀티 스캐너 시스템에 적합한 방식이며, 두 실내공간을 대상으로 한 테스트에서 단일 스캐너 대비 false positive rate를 각각 7.9% 및 13.6%까지 줄일 수 있었다. 최종적으로 연구대상지역의 2차원 및 3차원 지도 구축을 통해 개발된 graph-based SLAM의 효용성을 확인하였다. |