기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

K-SVD 기반 사전 훈련과 비음수 행렬 분해 기법을 이용한 중첩음향이벤트 검출

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 한국음향학회지= The journal of the acoustical society of Korea
ISSN 1225-4428,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 최현식,금민석,고한석
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2015-01-01
초록 비음수 행렬 분해(Nonnegative Matrix Factorization, NMF) 기법은 사전행렬과 크기성분을 번갈아 가며 업데이트 하면서 구하는 방법이며 직관적 해석 및 구현의 용이성으로 인해 중첩음향이벤트 분리 및 검출방법으로 널리 활용되었다. 하지만 비음수 행렬 분해의 고유한 특성인 부분기반표현(part-based representation)으로 인해 하나의 음향 이벤트를 구성 하는 사전(dictionary)의 파편화 현상이 발생하고, 다른 음향이벤트와 중복되는 사전이 생성되어 결과적으로 분리, 검출 성능의 저하 문제가 발생한다. 본 논문에서는 사전 획득 단계의 부분기반표현에 의한 문제를 해소하기 위해 K-Singular Value Decomposition(K-SVD)을 사용하여 사전을 획득하고, 음향이벤트 검출 단계 에서는 기존 비음수 행렬 분해 기법을 이용하여 크기를 획득 한다. 제안하는 방식을 통해 비음수 행렬 분해 기반의 사전을 사용하는 경우보다 중첩음향이벤트 검출 성능이 개선되는 것을 확인하였다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201518564243939
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 비음수 행렬 분해,중첩음향이벤트,Non-Negative Matrix Factorization (NMF),Spherical K-Means (SKM),K-SVD,Overlapping sound event