계층적 특징 학습을 이용한 3차원 물체 인식 시스템의 설계
기관명 | NDSL |
---|---|
저널명 | 정보처리학회논문지. KIPS transactions on software and data engineering. 소프트웨어 및 데이터 공학 |
ISSN | 2287-5905, |
ISBN |
저자(한글) | 김주희,김동하,김인철 |
---|---|
저자(영문) | |
소속기관 | |
소속기관(영문) | |
출판인 | |
간행물 번호 | |
발행연도 | 2016-01-01 |
초록 | 본 논문에서는 계층적 특징 학습을 이용하여 물체의 컬러 영상과 깊이 영상으로부터 해당 물체가 속한 범주와 개체, 그리고 다양한 속성들을 효과적으로 인식할 수 있는 시스템을 제안한다. 본 시스템의 전처리 단계에서는 물체의 깊이 영상을 물체의 모양 정보를 좀 더 효과적으로 표현할 수 있는 표면 법선 벡터 데이터로 변환하고, 특징 학습 단계에서는 물체의 컬러 영상과 표면 법선 벡터 데이터로부터 두 단계에 걸쳐 패치 단위 특징과 이미지 단위의 특징을 추출해낸다. 그리고 추출된 특징 벡터들과 SVM 학습 알고리즘을 이용하여 각기 독립적인 다수의 분류 모델들을 학습한다. 미국 워싱턴 대학의 RGB-D 물체 데이터 집합을 이용한 실험을 통해, 본 논문에서 제안하는 물체 인식 시스템의 높은 성능을 확인할 수 있었다. |
원문URL | http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201606050646406 |
첨부파일 |
과학기술표준분류 | |
---|---|
ICT 기술분류 | |
DDC 분류 | |
주제어 (키워드) | 특징 학습,RGB-D 영상,물체 인식,속성 인식,표면 법선 벡터,Feature Learning,RGB-D Images,Object Recognition,Attribute Recognition,Surface Normal Vector |