저자(한글) |
Kim, Jeong-Gyu,Kim, Woong-Tae,Ostriker, Eve C. |
저자(영문) |
|
소속기관 |
|
소속기관(영문) |
|
출판인 |
|
간행물 번호 |
|
발행연도 |
2016-01-01 |
초록 |
The incorporation of radiation from massive stars is essential for modeling the dynamics and chemistry of star-forming clouds, yet it is a computationally demanding task for three-dimensional problems. We describe the implementation and tests of radiative transfer module due to point sources on a three-dimensional Cartesian grid in the Eulerian MHD code Athena. To solve the integral form of the radiation transfer equation, we adopt a widely-used long characteristics method with spatially adaptive ray tracing in which rays are split when sampling of cells becomes coarse. We use a completely asynchronous communication pattern between processors to accelerate transport of rays through a computational domain, a major source of performance bottleneck. The results of strong and weak scaling tests show that our code performs well with a large number of processors. We apply our radiation hydrodynamics code to some test problems involving dynamical expansion of HII regions. |
원문URL |
http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201615964634922 |
첨부파일 |
|