기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

서포트 벡터 회귀를 이용한 블랙-박스 함수의 최적화

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 한국통계학회 논문집 = Communications of the Korean Statistical Society
ISSN 1225-9500,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 곽민정,윤민
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2008-01-01
초록 많은 실제적인 공학 설계문제에 있어서, 목적함수의 형태는 설계변수들에 의하여 정확하게 주어지지 않는다. 이러한 환경 하에서, 구조해석, 유체 역학 해석, 열역학 분석과 같은 등과 같은 문제에서 설계변수들의 값이 주어졌을 때 목적함수들의 값은 실제 실험이나 계산상의 실험을 통하여 얻어지게 된다. 일반적으로, 이러한 실험들은 많은 비용이 든다. 이런 경우에는 실험의 횟수를 가능한 적게 하기위하여, 목적함수의 형태를 예측하는 것과 병행하여 최적화를 수행하게 된다. 반응표면분석(Response Surface Methodology, RSM)은 이러한 접근 방법에서 잘 알려져 있다. 본 논문에서는 목적함수의 예측을 위하여 서포트 벡터 기계(Support Vector Machines, SVM)의 방법을 적용할 것이다. 이러한 접근에서 가장 중요한 과제들 중의 하나는 가능한 실험의 횟수를 적게 하기 위하여 적절하게 표본자료들을 배치하는 것이다. 이러한 목적에 서포트 벡터의 정보들이 효과적으로 사용되어짐을 보이고 제안한 방법의 효율성은 공학 설계문제에서 잘 알려진 수치 예제를 통하여 보인다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO200809906431920
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 서포트 벡터회귀,유전자 알고리즘,대역 정보와 국소정보,최적화,Support vector regression,genetic algorithm,global and local information,optimization