초록 |
많은 실제적인 공학 설계문제에 있어서, 목적함수의 형태는 설계변수들에 의하여 정확하게 주어지지 않는다. 이러한 환경 하에서, 구조해석, 유체 역학 해석, 열역학 분석과 같은 등과 같은 문제에서 설계변수들의 값이 주어졌을 때 목적함수들의 값은 실제 실험이나 계산상의 실험을 통하여 얻어지게 된다. 일반적으로, 이러한 실험들은 많은 비용이 든다. 이런 경우에는 실험의 횟수를 가능한 적게 하기위하여, 목적함수의 형태를 예측하는 것과 병행하여 최적화를 수행하게 된다. 반응표면분석(Response Surface Methodology, RSM)은 이러한 접근 방법에서 잘 알려져 있다. 본 논문에서는 목적함수의 예측을 위하여 서포트 벡터 기계(Support Vector Machines, SVM)의 방법을 적용할 것이다. 이러한 접근에서 가장 중요한 과제들 중의 하나는 가능한 실험의 횟수를 적게 하기 위하여 적절하게 표본자료들을 배치하는 것이다. 이러한 목적에 서포트 벡터의 정보들이 효과적으로 사용되어짐을 보이고 제안한 방법의 효율성은 공학 설계문제에서 잘 알려진 수치 예제를 통하여 보인다. |