얼굴영상과 예측한 열 적외선 텍스처의 융합에 의한 얼굴 인식
기관명 | NDSL |
---|---|
저널명 | 한국지능시스템학회 논문지 = Journal of Korean institute of intelligent systems |
ISSN | 1976-9172, |
ISBN |
저자(한글) | |
---|---|
저자(영문) | |
소속기관 | |
소속기관(영문) | |
출판인 | |
간행물 번호 | |
발행연도 | 2015-01-01 |
초록 | 이 논문에서는 가시광선 얼굴영상과 그로부터 예측한 열 적외선 텍스처의 데이터 융합에 의한 얼굴인식 방법에 관하여 연구하였다. 제안하는 얼굴인식 기법은 가시광선 얼굴영상과 열 적외선 텍스처를 PCA에 의하여 낮은 차원의 특징공간에서 특징벡터로 변환한 다음, 다층 신경회로망을 사용하여 가시광선 영상 특징으로부터 얼굴의 열적외선 특징을 예측하여 열 적외선 텍스처를 생성하였다. 학습과정에서는 주어진 개체로부터 획득한 한 쌍의 가시광선 및 열 적외선 영상에 대해서 PCA를 이용하여 낮은 차원의 특징공간으로 변환한 다음, 가시광선 영상특징으로부터 열 분포 특징으로 매핑시키는 비선형 함수에 해당하는 신경회로망의 내부 파라미터를 결정한다. 학습된 신경회로망은 입력 가시광선 얼굴 특징으로부터 열 에너지 분포 특성의 PCA계수를 예측하고, 이로부터 열 적외선 텍스처를 생성한다. 대표적인 두 가지 얼굴인식 알고리즘 Eigenfaces와 Fisherfaces을 사용하여 NIST/Equinox 데이터베이스에 대하여 얼굴인식에 관한 실험을 수행하였다. 예측한 열 적외선 텍스처와 가시광선 얼굴영상의 데이터 융합결과는 가시광선 얼굴영상만을 사용한 경우에 비해서 얼굴인식의 성능이 개선되었음을 수신자 조작특성 (ROC) 및 첫 번째 매칭성능에 의하여 검증하였다. |
원문URL | http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201532434264266 |
첨부파일 |
과학기술표준분류 | |
---|---|
ICT 기술분류 | |
DDC 분류 | |
주제어 (키워드) | 얼굴인식,열 적외선 영상,데이터 융합,조명의 변화,신경회로망,Face Recognition,Thermal IR Image,Data Fusion,Illumination Variations,Neural Networks |