초록 |
원격탐사 자료 기반의 식생지수 시계열 자료를 이용함에 있어서 가장 중요한 것은 구름이나 에어로졸에 의한 자료의 품질저하 문제이다. 이 연구에서는 MODIS09 지표 분광반사도 자료를 이용하여 구름영향에 의한 저품질 자료를 제거한 뒤 결손자료를 내삽, 평활하여 연속적인 Normalized Difference Vegetation Index (NDVI) 시계열 자료를 생산하였다. 구름에 의한 영향을 제거하기 위한 방법으로 MODIS 분광반사도 자료를 이용한 5가지의 구름탐지기법을 선정하여 비교, 평가하였다. 위성자료에서 제공하는 품질관리정보 (Quality Assessment, QA)에서 구름이라고 판단한 경우, MODIS09 Band 3 반사도가 10% 이상인 경우와 20% 이상인 경우, Cloud Detection Index (CDI)가 임계값 이상인 경우, 센서 천정각이 $32.25^{ circ}$ 이상인 경우를 각각 구름으로 판단하였다. 구름탐지로 인해 발생한 자료의 결손은 선형적 내삽 기법을 이용하여 보정한 뒤 Savitzky-Golay (S-G) 필터와 웨이브렛 변환을 각각 적용하여 평활하였다. 구름 탐지 기법은 10% 이상 Band 3 반사도 제거 기법(85%), Quality Control (QC) (82%), 20% 이상 Band 3 반사도 제거 기법(81%)의 순으로 높은 구름탐지율을 보였다. 웨이브렛 변환은 선형의 시계열 패턴을 얻을 수 있지만 원 자료의 최대값을 반영하지 못하는 반면 S-G 필터는 구름에 의한 신뢰도 낮은 값은 제거하면서도 NDVI 원 자료의 최대값을 유지하여 시계열 자료의 계절적 특성을 잘 보여주는 것을 확인하였다. 이 연구에서는 구름의 탐지, 결손 내삽, 평활 기법의 순차적인 자료처리기법을 적용하여 구름 영향을 제거한 고품질의 시계열 자료의 생산이 가능함을 확인하였다. |