의사결정나무를 이용한 다변량 공정관리 절차
기관명 | NDSL |
---|---|
저널명 | 한국데이터정보과학회지 = Journal of the Korean Data Information Science Society |
ISSN | 1598-9402, |
ISBN |
저자(한글) | 정광영,이재헌 |
---|---|
저자(영문) | |
소속기관 | |
소속기관(영문) | |
출판인 | |
간행물 번호 | |
발행연도 | 2015-01-01 |
초록 | 현대의 제조공정은 컴퓨터의 발전과 통신 및 네트워크의 발달로 컴퓨터통합제조가 가능해졌다. 이로 인해 고품질 제품의 고속 생산공정이 확대되고, 공정에서 실시간으로 전송되는 다양한 품질변수들의 데이터 축적 또한 가능하게 되었다. 이를 관리하기 위해서는 다변량 통계적 공정관리 절차가 필요하다. 전통적으로 사용하는 다변량 관리도는 이상상태 발생시 이상신호를 주지만, 이상원인이 어떠한 변수에 어떠한 영향을 주는지에 대한 정보를 제공하지 않는다는 단점이 있다. 이를 보완하기 위해 데이터마이닝과 기계학습 기법을 이용할 수 있다. 이 논문에서는 의사결정나무 학습 기법을 이용한 다변량 공정관리 절차를 소개하고, 이변량인 경우 모의실험을 통하여 그 효율을 살펴보았다. 모의실험 결과를 살펴볼 때, 상관계수에 따라 이상상태 탐지 능력은 비슷한 것으로 나타났고, 이상상태에 대한 분류 정확도는 상관계수와 이상원인의 형태에 따라 차이가 있지만 기존의 다변량 관리도에서는 제공하지 않는 이상원인의 정보를 제공하는 장점이 있음을 알 수 있다. |
원문URL | http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201518564243331 |
첨부파일 |
과학기술표준분류 | |
---|---|
ICT 기술분류 | |
DDC 분류 | |
주제어 (키워드) | 다변량 공정관리,데이터마이닝,의사결정나무 학습,컴퓨터통합제조,Computer integrated manufacturing,data mining,decision tree learning,multivariate process control |