초록 |
최근 컴퓨터의 사용이 보편화되면서 악의적 사용자에 의해 발생하는 컴퓨터 바이러스와 해킹에 의한 피해가 급속히 증가하고 있다. 남의 컴퓨터에 침입하는 해킹이나 데이터를 파괴하는 컴퓨터 바이러스에 의한 피해를 막기 위해 최근에 생명체의 면역시스템의 특징을 이용해 인공면역계를 구성해 시스템 침입탐지와 바이러스 탐지 및 치료에 대한 연구가 활발히 진행 중에 있다. 생체 면역계는 외부에서 침입해 세포나 장기에 피해를 주는 물질인 항원을 스스로 자기세포와 구분해 인식, 제거하는 기능이 있다. 이러한 면역계의 특징인 항원을 인식하는 기능은 자기세포의 확실한 인식을 가지고 있는 상태에서 다른 물질을 구분하는 자기/비자기(self/non-self) 인식방법으로 볼 수 있다. 본 논문에서는 생체 면역계에서 세포독성 T세포의 생성과정의 하나인 Positive Selection을 모델링하여 침입에 의한 데이터 변경과 바이러스에 의한 데이터 감염 등을 탐지할 때 가장 중요한 요소인 자기-인식 알고리즘을 구현하였다. 제안한 알고리즘은 큰 파일에서의 Detection을 구성하기 용이한 점을 가지며 극소변경과 블록변경에 대한 자기인식률을 통해 알고리즘을 유효성을 검증한다. |