기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

초음파영상에서 갑상선 결절의 컴퓨터자동진단을 위한 Texture Features 알고리즘 응용

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 한국콘텐츠학회논문지 = The Journal of the Korea Contents Association
ISSN 1598-4877,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 고성진,이진수,예수영,김창수
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2013-01-01
초록 초음파영상은 갑상선 질병에서 결절성 갑상선 질병을 진단하는 검사로서 결절의 위치, 크기, 개수, 내부 에코 특성에 대한 정보를 제공하여 암의 가능성이 높은 고위험 결절을 선별하며, 세침흡인 검사 시 정확한 유도를 가능하게 한다. 갑상선 결절 중 악성으로 진단되는 경우는 5% 미만이지만 초음파에서 감별진단이 중요하다. 그러므로 본 연구에서는 병리학적으로 갑상선 유두암으로 진단된 증례를 실험 대상으로 하며, 영역을 묘사하는 알고리즘으로 그 질감을 정량화하는 방법으로 질감특징 분석(TFA)를 적용하여 컴퓨터자동진단의 검출 효율을 실험하였다. 초음파영상에서 관심영역을 설정하여 $50{ times}50$ 픽셀 크기, 히스토그램 평활화로 전처리하여 실험영상을 획득하였다. 전체영상 70증례에서 갑상선 유두암의 영상 35증례를 테스트 영상으로 하고, 고유영상 생성의 정상영상 35증례를 학습영상으로 실험하였다. 질감특징 분석 알고리즘을 적용한 실험결과 GLavg, SKEW, UN, ENT 4개 파라미터의 질병 검출 효율이 91~100%로 높게 나타났다. 이는 갑상선 결절 질병을 감별하는 컴퓨터자동진단의 응용을 나타내며, 갑상선 질병의 감별진단에 전처리 자동진단 가능성을 나타낸다. 향후 추가적인 관련 알고리즘의 연구가 계속 진행된다면 갑상선 질병의 컴퓨터자동진단의 실용화기반을 마련할 수 있을 것이고, 다양한 초음파영상의 질병에 대한 적용이 가능할 것으로 사료된다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201317660995838
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 갑상선 초음파영상,갑상선 유두암,컴퓨터자동진단,Thyroid US,Papillary thyroid CA,TFA,CAD