기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

인공신경망 모델을 이용한 소양강 유역의 GCM 모의결과 상세화 기법에 대한 연구

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 한국수자원학회 2010년도 학술발표회
ISSN ,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 이경주,성경민,김수영,허준행
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2010-01-01
초록 최근 많은 수문학자들은 전지구적 기후변화로 인한 피해 예방과 저감을 위해 기후변화가 수문학적으로 어떤 영향을 미치고 있는지 알기 위해 많은 연구를 진행하고 있으며, 기후변화시나리오를 작성하고자 이산화탄소 배출농도를 가정하여 다양한 시나리오를 생성하고 있다. 본 연구에서는 효율적인 수자원 관리를 위해 저해상도의 GCM(General Circulation Models) 모형에서 생성되는 모의결과를 유역 규모의 단위로 스케일 상세화 기법(downscaling)을 적용 시켜 보고자 한다. 이를 위해 2007년 IPCC AR4와 함께 제시된 SRES A1B 시나리오를 채택하여 우리나라 기상청이 연구에 참여 제공하고 있는 EHCO-G 모델의 모의결과를 이용하여 소양강 유역에 적용하였다. 상세화 기법으로는 현재와 과거의 입력값들과 이에 대응된 출력값들을 알고 있는 경우에 미래의 새로운 입력값들에 대한 예측값들을 추출하는데 유용하며, 비선형적 비연속적인 특성이 강한 모델에 강점을 가지고 있는 인공신경망(Artificial Neural Network) 모델을 사용하고자 한다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NPAP&cn=NPAP10076700
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 전지구모델,인공신경망,규모축소,GCM