기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

신경망을 이용한 MODIS NDVI의 자동화 변화탐지 기법

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 電子工學會論文誌. Journal of the Institute of Electronics Engineers of Korea. CI, 컴퓨터
ISSN 1229-6376,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글)
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2012-01-01
초록 지구의 중요한 천연자원인 산림을 포함한 자연 식생환경은 지난 1세기 동안 많은 변화를 겪으며 기후에도 영향을 미치게 되어 현재 지구적 차원의 관심 속에서 다양한 연구가 진행되고 있다. 원격탐사는 분광적 특성을 이용하여 식생의 특성을 탐지할 수 있어 식생자원을 모니터링하는데 매우 효율적인 수단이다. 이러한 연구에서는 보통 원격탐사 측정을 분석하여 관찰된 화소가 식생을 포함하고 있는 정도를 나타내는 식생지수가 사용되고 있는데 NDVI가 이중 가장 많이 사용되는 식생지수이다. 본 논문에서는 MODIS NDVI 시계열 자료를 이용하여 자동으로 식생의 변화를 탐지해 가는 방법론이 제안되어 있다. 변화탐지를 위해 비모수 방법의 신경망 모형이 사용되었고 특성벡터로는 한 화소에서 다중 시기의 NDVI 차이와 더불어 NDVI 시계열 자료의 시간상의 관계가 함께 고려될수 있도록 제안되었다. 사용된 모형의 테스트를 위해 2006년부터 2011년까지 한반도 지역에 대한 MODIS MYD13Q1 자료가 사용되었다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201215053141617
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) Remotely Sensed Data,Vegetation index,NDVI,Neural Network,MODIS