기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

홍채 인식을 위한 포물 허프 변환 기반 눈꺼풀 영역 검출 알고리즘

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 電子工學會論文誌. Journal of the Institute of Electronics Engineers of Korea. SP, 신호처리
ISSN 1229-6384,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 장영균,강병준,박강령
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2007-01-01
초록 홍채 인식은 홍채 패턴 정보를 이용하여 사람의 신원을 확인하는 생체 인식 기술이다. 일반적인 홍채 인식 시스템에서 취득된 홍채 영상에는 홍채 패턴 정보를 가리는 눈꺼풀이 포함된다. 이러한 눈꺼풀은 홍채 인식의 성능을 저하시키는 요소이다. 따라서 본 논문에서는 홍채인식의 정확성을 향상시키기 위해 눈꺼풀 검출 알고리즘을 제안한다. 본 연구는 기존의 방법에 비해 다음과 같은 세 가지 차별성과 장점을 가지고 있다. 첫 번째, 눈꺼풀 검출에 문제가 되는 속눈썹과 조명 반사광(specular reflection)을 기존의 방법에 의해 검출한 후에, 선형 보간법(interpolation)을 이용하여 제거하는 방법을 제안함으로써 눈꺼풀 추출의 정확도를 향상하였다. 두 번째, 기존의 알고리즘은 눈꺼풀 후보점을 추출하기 위해 홍채의 넓은 부분을 탐색하므로 영상잡음이나 홍채 패턴 등에 의해 눈꺼풀을 잘못 추출하는 경우가 많았다. 이러한 문제를 해결하기 위하여 본 논문에서는 검출된 홍채의 외곽경계 정보에 의해 초기 눈꺼풀 탐색 영역을 결정하고, 마스크 기법을 이용하여 눈꺼풀 후보점들을 추출함으로써 눈꺼풀 추출 에러를 감소시켰다. 세 번째, 기존의 알고리즘들은 포물선 방정식에 의해 눈꺼풀 영역을 검출하지만, 사용자의 눈의 회전을 고려하지 않았기 때문에 많은 에러가 발생되었다. 따라서 제안하는 알고리즘은 눈의 회전을 고려한 회전된 포물선 방정식을 이용한 허프 변환(Hough transform)을 통해 눈꺼풀을 검출함으로써 이러한 에러 발생을 감소시켰다. CASIA 데이터베이스의 홍채 영상을 사용하여 제안하는 눈꺼풀 검출 알고리즘을 실험한 결과, 위 눈꺼풀의 검출 정확도는 90.82%, 아래 눈꺼풀의 검출 정확도는 96.47%였다.개발 제안하였다.으로 표현되는 방법을 보인다.$28.9{ sim}18.0%$ 로 낮았다. 이와 같은 결과는 고구마 끝순에 다량 함유된 페놀화합물과 관련된 것으로 사료된다. 용매분획별로는 EtOAc gt;BuOH gt;Tocopherol gt;Water gt; $CHCl_3$ gt;Hexane층 순으로 높은 활성을 나타냈다. 5. 아질산염소거능은 끝순, 들깨잎, 콩나물이 우수하였고 그중 들깨잎이 저해율 72%로 가장 높았으며, 용매분획 중에는 BuOH과 water추출물의 활성이 가장 높았다. 6. ACE 저해 효과는 고구마 부위별로는 끝순이 괴근에 비하여 1.5배 높았고, 들깨잎, 콩나물, 시금치보다 $1.9{ sim}3.7$ 배 높았다. 용매분획별로는 EtOAc, BuOH, water 추출물이 높은 활성을 보였다. 7. 이상을 종합하여 볼 때 고구마 끝순에는 페놀화합물이 다량 함유되어 있어 높은 항산화 활성을 가지며, 아질산염소거능 및 ACE저해활성과 같은 생리적 효과도 높아 기능성 채소로 이용하기에 충분한 가치가 있다고 판단된다.등의 관련 질환의 예방, 치료용 의약품 개발과 기능성 식품에 효과적으로 이용될 수 있음을 시사한다.tall fescue 23%, Kentucky bluegrass 6%, perennial ryegrass 8%) 및 white clover 23%를 유지하였다. 이상의 결과를 종합할 때, 초종과 파종비율에 따른 혼파초지의 건물수량과 사료가치의 차이를 확인할 수 있었으며, 레드 클로버 + 혼파 초지가 건물수량과 사료가치를 높이는데 효과적이었다. ell}$ 이었으며 , yeast extract 첨가(添加)하여 배양시(培養時)는 yeast extract 농도(濃度)가 증가(
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO200727543131895
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 홍채 인식,눈꺼풀 검출,포물 허프 변환,Iris Recognition,Eyelid Detection,Parabolic Hough Transform