기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

통계모델링 방법의 비교 연구

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 한국산학기술학회논문지 = Journal of the Korea Academia-Industrial cooperation Society
ISSN 1975-4701,2288-4688
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글)
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2016-01-01
초록 입력 랜덤 변수(input random variable)의 통계 모델링은 기계시스템의 신뢰성 해석(reliability analysis), 신뢰성 기반 설계(reliability-based design optimization), 해석모델의 통계적 검정(validation) 및 보정(calibration)을 위해 반드시 필요하다. 대표적인 통계모델링 기법에는 Akaike Information Criterion (AIC), AIC correction (AICc), Bayesian Information Criterion, Maximum Likelihood Estimation (MLE), Bayesian 방법 등이 있다. 이러한 방법들은 기본적으로 주어진 데이터로부터 후보 모델의 우도함수값을 이용하여 후보 모델 중 가장 적합한 모델을 선택하는 방법이며, 방법에 따라 데이터 수 혹은 파라미터의 수를 고려하여 모델을 선정한다. 하지만 실제 현장에서 데이터의 통계모델링을 하는 엔지니어는 각 방법의 장단점에 대한 이해가 부족하여 어떤 방법이 정확한 방법인지 몰라 통계모델링 수행 시 어려움이 있다. 본 논문에서는 다양한 통계모델링 방법들을 비교하고 각 방법의 장단점 분석을 통해 가장 적합한 모델링 기법을 제안하고자 한다. 각 방법의 검증을 위해 다양한 모분포를 가정하고 다양한 사이즈의 샘플을 임의로 생성하여 시뮬레이션을 수행하였으며, 실제 공학 데이터를 사용하여 통계모델링 방법의 유효성을 검증하였다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201619036407959
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) AIC,AICc,Bayesian method,BIC,MLE,Statistical modeling