기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

Transition temperatures and upper critical fields of NbN thin films fabricated at room temperature

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 Progress in superconductivity and cryogenics : PSAC
ISSN 1229-3008,2287-6251
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) Hwang, T.J.,Kim, D.H.
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2015-01-01
초록 NbN thin films were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an $Ar-N_2$ gas mixture. Total sputtering gas pressure was fixed while varying $N_2$ flow rate from 1.4 sccm to 2.9 sccm. X-ray diffraction pattern analysis revealed dominant NbN(200) orientation in the low $N_2$ flow rate but emerging of (111) orientation with diminishing (200) orientation at higher flow rate. The dependences of the superconducting properties on the $N_2$ gas flow rate were investigated. All the NbN thin films showed a small negative temperature coefficient of resistance with resistivity ratio between 300 K and 20 K in the range from 0.98 to 0.89 as the $N_2$ flow rate is increased. Transition temperature showed non-monotonic dependence on $N_2$ flow rate reaching as high as 11.12 K determined by the mid-point temperature of the transition with transition width of 0.3 K. On the other hand, the upper critical field showed roughly linear increase with $N_2$ flow rate up to 2.7 sccm. The highest upper critical field extrapolated to 0 K was 17.4 T with corresponding coherence length of 4.3 nm. Our results are discussed with the granular nature of NbN thin films.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201530261998882
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) Niobium nitride thin film,reactive magnetron sputtering,granular superconductivity,nitrogen flow rate