재발량 분석을 이용한 음향 상황 인지
기관명 | NDSL |
---|---|
저널명 | 한국음향학회지= The journal of the acoustical society of Korea |
ISSN | 1225-4428, |
ISBN |
저자(한글) | 박상욱,최우현,고한석 |
---|---|
저자(영문) | |
소속기관 | |
소속기관(영문) | |
출판인 | |
간행물 번호 | |
발행연도 | 2016-01-01 |
초록 | 동일한 장소에서도 매우 다양한 음향이 발생하고, 서로 다른 장소에서도 유사한 음향이 발생하기 때문에 훈련 데이터가 적거나, 훈련 단계에서 일부 음향만 고려된 경우 음향 상황 인지 성능을 보장할 수 없다. 이러한 문제점을 해결하기 위한 방법으로 Bag of Words (BOW) 기반 히스토그램 특징이 소개되었다. 하지만 BOW 기반 히스토그램 특징은 일정 시간동안 발생한 음향의 분포를 이용하기 때문에 음향이 발생한 순차적인 정보는 고려할 수 없다. 음향 상황 인지에서 일정 시간 동안 발생한 음향의 주기성과 지속성은 상황을 인지하는데 중요한 정보가 될 수 있다. 따라서 본 논문에서는 재발량 분석을 이용하여 주기성과 지속성에 대한 특징을 추출하였다. 인식 실험에서 재발량 분석을 통해 추출된 특징을 함께 사용한 경우 기존 방법들 보다 향상된 성능을 확인했다. |
원문URL | http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201611059007279 |
첨부파일 |
과학기술표준분류 | |
---|---|
ICT 기술분류 | |
DDC 분류 | |
주제어 (키워드) | 음향 상황 인지,재발량 분석,서포트 벡터 머신,Acoustic scene classification,Bag of Words (BOW),Recurrence quantification analysis,Support vector machine |