기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

의료 영상을 이용한 영상 분할 알고리듬 연구

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 한국의학물리학회 2003년도 제27회 추계학술대회
ISSN ,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 호동수,이형구,김성현,김도일,서태석,최보영,이진희
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2003-01-01
초록 CT와 MRI의 단면 영상을 대상으로 영상분할 (Image segmentation)과 Image registration방법을 이용하여 인체 모델을 개발 하고자 한다. 우선 인체의 Head와 Neck부분의 CT와 MR 영상을 얻어 뼈, 근육, 인대, 그리고 그 밖의 장기의 해부학적 영상 특징을 분석하였다. 인체의 Head와 Neck 부분에 대한 CT와 MR 영상에 대해 각 부위별로 ROI(region-of-interrest)를 설정하였고, 각 volxel 마다 3차원 좌표를 계산할 수 있는 소프트웨어를 개발하였다. 특히 각 해부학적 영상에서 부위별로 CT 번호를 분석하고, pulse sequence에 따른 MRI 영상의 부위별 특정을 분석하였다. 이 분석한 자료를 바탕으로 영상 분할을 하였다. 영상 분할전에 각종 잡음(noise) 제거 및 영상 분할을 효과적으로 처리하기 위해 기본적인 영상처리 (filtering)를 구현하였고, 대조도(contrast) 및 밝기(brightness)를 조절할 수 있게 프로그램을 구현하였다. 영상 분할 방법 중 선(line) 및 에지(edge) 의 검출 방법, 문턱치화(threshold) 방법, 영역확대(region growing) 방법으로 영상 분할을 해봄으로써 우리의 인체 모델링 개발에 가장 적합한 영상 분할 알고리듬 방법을 찾도록 시도하였다. 결과적으로 말하면, 한가지 방법의 알고리듬을 쓰는 것보다는 인체의 부위에 따라 두 가지 이상의 알고리듬 방법을 쓰는 것이 원하고자 하는 부위를 영상 분할하는데 더 효과적이다는 것을 알게 되었다. 우리의 연구 과제에서는 영역확대(region growing) 방법과 문턱치화 방법, 모드법(피크니스, 밸리)의 알고리듬을 이용하여 영상 분할을 한 결과 우리가 얻고자 하는 인체 부위별 중 근육과 뼈를 구별하는데는 별 무리가 없었으나, 인대 및 기타 장기를 구별하는데는 어려움을 겪게 되었다. 이후에 좀더 알고리듬을 연구하여 이번 연구에서 구별하기 어려운 장기 부분도 구별 할 수 있도록 노력하겠다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NPAP&cn=NPAP08063088
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) Image Segmentation,Image Rregistration,ROI(region-of-interrest),pulse sequence