초록 |
최근 무인비행시스템(UAS)에 대한 관심이 높아지고 있으며, 홍수시 UAS를 활용하여 침수모니터링을 수행하기 위해서는 촬영된 영상으로부터 수체를 효과적으로 탐지할 수 있는 기법 개발이 필요하다. 본 연구에서는 RGB와 NIR+RG 밴드를 탑재한 UAS를 활용하여 영상을 획득하였으며, 감독분류기법을 적용하여 수체탐지 정확도를 평가하였다. 먼저 RGB 영상에 의한 수체의 영상분류 정확도 평가에서는 인공신경망과 최소거리법의 Kappa 계수가 각각 0.791과 0.783로 높게 나타났으며, 최대우도법이 0.561로 가장 낮게 나타났다. 또한 NIR+RG 영상에 의한 수체의 영상분류 정확도 평가에서는 Mahalanobis와 최소거리법이 각각 0.869와 0.830으로 높게 나타났으며, 인공신경망법이 0.779로 매우 낮게 나타났다. 특히 RGB 밴드에서는 송산유원지의 수목이나 초지가 수체로 오분류되는 문제가 발생하였으나, NIR+RG 밴드에서는 이러한 문제가 많이 개선되었다. 따라서, RGB 밴드에 비해 NIR+RG 밴드를 탑재한 영상이 Mahalanobis와 최소거리법을 적용시 수체를 탐지하는데 효과적인 것으로 나타났다. |