기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

Follicular Unit Classification Method Using Angle Variation of Boundary Vector for Automatic Hair Implant System

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 ETRI journal
ISSN 1225-6463,2233-7326
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) Kim, Hwi Gang,Bae, Tae Wuk,Kim, Kyu Hyung,Lee, Hyung Soo,Lee, Soo In
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2016-01-01
초록 This paper presents a novel follicular unit (FU) classification method based on an angle variation of a boundary vector according to the number of hairs in several FU images. The recently developed robotic FU harvest system, ARTAS, classifies through digital imaging the FU type based on the number of hairs with defects in the contour and outline profile of the FU of interest. However, this method has a drawback in that the FU classification is inaccurate because it causes unintended defects in the outline profile of the FU. To overcome this drawback, the proposed method classifies the FU's type by the number of variation points that are calculated using an angle variation a boundary vector. The experimental results show that the proposed method is robust and accurate for various FU shapes, compared to the contour-outline profile FU classification method of the ARTAS system.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201650661372155
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) Hair transplantation,follicular unit (FU),classification,FU harvest,angle variation