초록 |
최근 다양한 생체신호를 이용한 사용자 인식 방법들이 연구되고 있으며 그 중에 보행을 기반으로 한 사용자 인식 방법이 활발하게 연구되고 있다. 본 논문에서는 사람이 보행할 때 사용되는 허벅지 근육의 EMG(Electromyography) 신호를 기반으로 사용자를 인식하는 방법을 제안하였다. 근전도 신호의 RMS, MAV, VAR, WAMP, ZC, SSC, IEMG, MMAV1, MMAV2, MAVSLP, SSI, WL를 특징으로 산출하여 ANN(Artificial Neural Network) 분류기를 통해 사용자를 인식한다. 사용자 인식에 적합한 근육과 특징을 선별하기 위해서 근육 및 특징별 인식률을 비교한 결과 대퇴직근, 반건양근, 외측광근이 사용자 인식에 적합한 근육으로 나타났으며, MAV, ZC, IEMG, MMAV1, MAVSLP 특징이 사용자 인식에 적합한 특징으로 나타났다. 실험결과 모든 특징들과 채널들을 사용했을 때의 인식률은 평균 99.7%을 보였고 사용자 인식에 적합하다고 판단되는 3개의 근육, 5개의 특징을 사용했을 때의 인식률은 평균 96%을 보였다. 따라서 사용자의 보행에 따른 EMG 신호 기반 사용자 인식이 가능함을 확인하였다. 그리고 사용자 인식에 적합한 소수의 채널과 특징을 사용하여 사용자 인식하는데 적용될 수 있음을 확인하였다. |