기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

EMG 신호 기반 Artificial Neural Network을 이용한 사용자 인식

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 Journal of the Institute of Electronics and Information Engineers = 전자공학회논문지
ISSN 2287-5026,2288-159x
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 김상호,류재환,이병현,김덕환
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2016-01-01
초록 최근 다양한 생체신호를 이용한 사용자 인식 방법들이 연구되고 있으며 그 중에 보행을 기반으로 한 사용자 인식 방법이 활발하게 연구되고 있다. 본 논문에서는 사람이 보행할 때 사용되는 허벅지 근육의 EMG(Electromyography) 신호를 기반으로 사용자를 인식하는 방법을 제안하였다. 근전도 신호의 RMS, MAV, VAR, WAMP, ZC, SSC, IEMG, MMAV1, MMAV2, MAVSLP, SSI, WL를 특징으로 산출하여 ANN(Artificial Neural Network) 분류기를 통해 사용자를 인식한다. 사용자 인식에 적합한 근육과 특징을 선별하기 위해서 근육 및 특징별 인식률을 비교한 결과 대퇴직근, 반건양근, 외측광근이 사용자 인식에 적합한 근육으로 나타났으며, MAV, ZC, IEMG, MMAV1, MAVSLP 특징이 사용자 인식에 적합한 특징으로 나타났다. 실험결과 모든 특징들과 채널들을 사용했을 때의 인식률은 평균 99.7%을 보였고 사용자 인식에 적합하다고 판단되는 3개의 근육, 5개의 특징을 사용했을 때의 인식률은 평균 96%을 보였다. 따라서 사용자의 보행에 따른 EMG 신호 기반 사용자 인식이 가능함을 확인하였다. 그리고 사용자 인식에 적합한 소수의 채널과 특징을 사용하여 사용자 인식하는데 적용될 수 있음을 확인하였다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201613752759731
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) Electromyography,Human identification,Biometrics,Artificial neural network,Gait