화자분할을 위한 지역적 특성 기반 밀도 클러스터링
기관명 | NDSL |
---|---|
저널명 | 한국음향학회지= The journal of the acoustical society of Korea |
ISSN | 1225-4428, |
ISBN |
저자(한글) | 노진상,손수원,김성수,이재원,고한석 |
---|---|
저자(영문) | |
소속기관 | |
소속기관(영문) | |
출판인 | |
간행물 번호 | |
발행연도 | 2015-01-01 |
초록 | 화자 분할은 사전에 분류되지 않은 데이터를 각각의 화자로 분류하는 연구이며 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)은 간결함과 계산의 효율성으로 인해 화자분할 분야에 널리 사용되어 왔다. 그러나 클러스터의 데이터들이 공간적이지 않으며 서로 다른 클러스터가 근접하여 경계를 공유할 때 오버클러스터링 문제가 발생하여 DBSCAN의 성능이 하락한다. 본 논문에서는 DBSCAN과 문제점을 설명하고, 개체의 지역적 특성에 기반한 밀도 기반 클러스터링 알고리즘을 제안한다. 제안하는 알고리즘은 개체의 지역적 밀도와 분산의 정도에 따라 가변적인 판단 기준을 탐색에 이용한다. DBSCAN과 제안 기법의 실험을 통해 성능을 비교하고 제안 기법의 효용을 보인다. 실험 결과 제안한 방법은 오버클러스터링이 발생하지 않으며 DBSCAN에 비해 보다 높은 정확도를 보여 지역적 특성을 이용한 접근 방법이 효과적임을 증명한다. |
원문URL | http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201523964822194 |
첨부파일 |
과학기술표준분류 | |
---|---|
ICT 기술분류 | |
DDC 분류 | |
주제어 (키워드) | 밀도 기반 클러스터링,화자 분할,지역적 밀도,오버클러스터링,Density based clustering,Speaker diarization,DBSCAN,Local density,Over-clustering |