초록 |
포인트 속성의 위치 기반 소셜 네트워크 서비스(Location-Based Social Network Services, LBSNS) 데이터를 멀티스 케일의 타일맵상에 효과적으로 시각화하기 위해서는 격자 기반으로 군집화하여 표현해야 할 필요성이 있다. 이때 격자의 크기 및 개수를 결정해야 하는데, 이에 대한 기준은 정해진 것이 없으며 데이터의 종류와 분석 목적에 따라 달라지므로 연구자의 주관이 개입될 수밖에 없다. 이때 연구 결과에 영향을 끼치는 공간단위 임의성의 문제(Modifiable Areal Unit Problem, MAUP)가 발생한다. 본 연구에서는 LBSNS 중 지오태깅(geotagging)된 트위터(Twitter) 데이터를 대상으로 하여 이러한 MAUP의 영향을 스케일 효과(scale effect)의 측면에서 탐색해 보고자 하였다. 이를 위해 공간오차모델(spatial error model)을 이용하여 데이터의 공간적 자기상관성(spatial autocorrelation)의 정도를 조절하였으며, 이에 대해 격자의 크기를 달리함에 따른 공간적 자기상관성의 변화를 Moran's I를 통해 분석하였다. 실험 결과, 원 데이터에는 양의 공간적 자기상관성이 존재하는 것을 확인하였으며, 이러한 경우에는 공간오차모델의 공간자기회귀계수(spatial autoregressive coefficient)의 값이 증가할수록 공간적 자기상관성이 감소하는 것을 알 수 있었다. 이러한 특성을 이용하여 트위터 데이터의 공간적 자기상관성의 강도를 5단계로 조절하였으며, 각 단계에 대하여 격자의 크기를 9단계로 나누어 각각에서의 Moran's I를 계산하였다. 그 결과, 합역 수준이 높아질수록 공간적 자기상관성이 증가하다가 격자의 크기가 600m에서 1,000m 사이일 때 감소하는 것을 알 수 있었으며, 공간적 자기상관성이 강할수록 MAUP에서의 스케일 효과는 감소하는 경향이 있는 것을 확인하였다. |