기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

Use of Unmanned Aerial Vehicle for Multi-temporal Monitoring of Soybean Vegetation Fraction

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 바이오시스템공학 = Journal of biosystems engineering
ISSN 1738-1266,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) Yun, Hee Sup,Park, Soo Hyun,Kim, Hak-Jin,Lee, Wonsuk Daniel,Lee, Kyung Do,Hong, Suk Young,Jung, Gun Ho
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2016-01-01
초록 Purpose: The overall objective of this study was to evaluate the vegetation fraction of soybeans, grown under different cropping conditions using an unmanned aerial vehicle (UAV) equipped with a red, green, and blue (RGB) camera. Methods: Test plots were prepared based on different cropping treatments, i.e., soybean single-cropping, with and without herbicide application and soybean and barley-cover cropping, with and without herbicide application. The UAV flights were manually controlled using a remote flight controller on the ground, with 2.4 GHz radio frequency communication. For image pre-processing, the acquired images were pre-treated and georeferenced using a fisheye distortion removal function, and ground control points were collected using Google Maps. Tarpaulin panels of different colors were used to calibrate the multi-temporal images by converting the RGB digital number values into the RGB reflectance spectrum, utilizing a linear regression method. Excess Green (ExG) vegetation indices for each of the test plots were compared with the M-statistic method in order to quantitatively evaluate the greenness of soybean fields under different cropping systems. Results: The reflectance calibration methods used in the study showed high coefficients of determination, ranging from 0.8 to 0.9, indicating the feasibility of a linear regression fitting method for monitoring multi-temporal RGB images of soybean fields. As expected, the ExG vegetation indices changed according to different soybean growth stages, showing clear differences among the test plots with different cropping treatments in the early season of 1. Conclusion: Therefore, multi-temporal images obtained with an UAV and a RGB camera could be applied for quantifying overall vegetation fractions and crop growth status, and this information could contribute to determine proper treatments for the vegetation fraction.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201617559404010
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) Barley cover cropping,Excess green,Image processing,M-statistic method,UAV,Vegetation index