서비스업생산지수와 서비스업도소매지수와의 상호연관성에 관한 연구
기관명 | NDSL |
---|---|
저널명 | 서비스연구 = Journal of service research and studies |
ISSN | 2234-2850, |
ISBN |
저자(한글) | |
---|---|
저자(영문) | |
소속기관 | |
소속기관(영문) | |
출판인 | |
간행물 번호 | |
발행연도 | 2016-01-01 |
초록 | 본 논문은 한국은행 경제통계시스템에서 제공한 서비스업생산지수와 서비스업도소매지수를 가지고 상호간의 연관성을 분석하였다. 분석을 위한 통계분석 기간은 2000년 1월부터 2015년 9월까지 15년 9개월간의 월별자료 189개를 사용하였고, 분석도구로는 E-Views 6을 이용하여 VAR 모형을 통한 그랜저 인과관계분석(Granger Causality test)과 충격반응분석(Impulse Response Function) 및 분산분해(Variance Decomposition)를 실시하였다. 주요 분석결과는 다음과 같다. 첫째, 그랜저 인과관계 분석결과(Granger Causality test) 상승률과 변동성에 있어서 서비스업생산지수와 서비스업도소매지수 상호간에 예측력이 있음을 알 수 있었다. 둘째, 충격반응함수(Impulse Response Function)분석결과 서비스업생산지수와 서비스업도도소매지수에 사이에 충격이 존재하여 일정시차까지 영향을 미치다가 사라짐을 알 수 있었다. 이는 다른 산업뿐만 아니라 서비스업산업에 있어서도 생산량은 어느 정도 도소매업체의 판매량을 예측할 수 있다는 것으로 해석할 수 있다. 마지막으로 분산분해(Variance Decomposition) 분석결과 서비스업도소매지수는 일정시차동안 73.65%~65.59%의 서비스업생산지수에 의하여 영향을 받는 것으로 나타났다. 하지만 서비스업생산지수는 일정시차동안 0.97%~1.92%의 서비스업도소매지수에 영향을 받는 것으로 나타나 영향력이 미미함을 알 수 있었다. 본 연구는 다양한 지수를 대상으로한 상호간의 가격발견을 통한 상호연관성을 분석한 기존의 연구방법을 확장하여 서비스업생산지수와 서비스업도소매지수와의 가격발견 기능을 파악하는데 기여하였다고 사료된다. 이와 같은 연구결과는 물가지수를 관리하고 있는 정부에게 물가정책을 수립하는데 의미를 부여하고, 각종 지수를 관리하고 있는 한국은행 및 통계청에게 의미 있는 시사점을 제공할 것으로 판단된다. 본 연구에 대한 한계점으로는 물가지수를 이용한 선행연구가 많지 않아서 좀 더 체계적인 분석이 부족하다는 점과 구조변화 시점을 구분하여 분석하지 못했다는 점이다. 따라서 다양한 물가지수를 활용한 후속연구와 구조변화를 전후를 대상으로 한 추가연구가 필요하다고 사료된다. |
원문URL | http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201606050646943 |
첨부파일 |
과학기술표준분류 | |
---|---|
ICT 기술분류 | |
DDC 분류 | |
주제어 (키워드) | 서비스업생산지수,서비스업도소매지수,그랜저 인과관계,충격반응함수,분산분해,Service Industrial Production Index,Service Industrial Wholesale and Retail Index,VAR,Granger Causality test,Impulse Response Function,Variance Decomposition |