기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

국민건강영양조사를 활용한 대사증후군 유병 예측모형 개발을 위한 융복합 연구: 데이터마이닝을 활용하여

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 디지털융복합연구 = Journal of digital convergence
ISSN 1738-1916,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 김한결,최근호,임성원,이현실
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2016-01-01
초록 이 연구의 목적은 국민건강영양조사 2012년 자료 중 40세 이상 성인의 대사증후군 유병 여부를 예측에 영향을 미치는 변수를 확인하고 이를 예측하는 모형 개발하는데 있다. 선행연구를 통해 모델 생성에 필요한 투입변수를 선정하였다. 연구결과 투입변수 중 사회경제적 요인이 상위 순위에 해당하였으며, 건강행위 요인의 경우 하위 순위로 나타났다. 또한, 최종 예측모형은 의사결정나무 (Decision Tree)일 경우 90. 32%의 가장 높은 예측력을 나타내고 있었다. 이 연구의 결과는 다음과 같은 시사점을 나타낸다. 먼저, 대사증후군에 대한 예방 및 관리에 있어 건강행위에 대한 접근과 함께 사회경제적 요인에 대한 접근도 병행을 고려해야 한다. 또한, 의사결정나무 알고리즘의 경우 결과해석의 용이성이 있어 보건의료분야에서 많이 사용되며, 선행연구의 결과와 마찬가지로 높은 예측정확도를 나타내고 있다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201609562998521
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 대사증후군,속성선택,데이터 마이닝,의사결정나무,로지스틱 회귀분석,인공신경망,국민건강영양조사,Metabolic syndrome,Feature selection,Data mining,Decision tree,Logistic regression,Artificial neural network,KHNES