기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

부트스트랩 샘플링 최적화를 통한 앙상블 모형의 성능 개선

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 Journal of Internet Computing and Services = 인터넷정보학회논문지
ISSN 1598-0170,2287-1136
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글)
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2016-01-01
초록 앙상블 학습 기법은 개별 모형보다 더 좋은 예측 성과를 얻기 위해 다수의 분류기를 결합하는 것으로 예측 성과를 향상시키는데에 매우 유용한 것으로 알려져 있다. 배깅은 단일 분류기의 예측 성과를 향상시키는 대표적인 앙상블 기법중의 하나이다. 배깅은 원 학습 데이터로부터 부트스트랩 샘플링 방법을 통해 서로 다른 학습 데이터를 추출하고, 각각의 부트스트랩 샘플에 대해 학습 알고리즘을 적용하여 서로 다른 다수의 기저 분류기들을 생성시키게 되며, 최종적으로 서로 다른 분류기로부터 나온 결과를 결합하게 된다. 배깅에서 부트스트랩 샘플은 원 학습 데이터로부터 램덤하게 추출한 샘플로 각각의 부트스트랩 샘플이 동일한 정보를 가지고 있지는 않으며 이로 인해 배깅 모형의 성과는 편차가 발생하게 된다. 본 논문에서는 이와 같은 부트스트랩 샘플을 최적화함으로써 표준 배깅 앙상블의 성과를 개선시키는 새로운 방법을 제안하였다. 제안한 모형에서는 앙상블 모형의 성과를 개선시키기 위해 부트스트랩 샘플링을 최적화하였으며 이를 위해 유전자 알고리즘이 활용되었다. 본 논문에서는 제안한 모형을 국내 부도 예측 문제에 적용해 보았으며, 실험 결과 제안한 모형이 우수한 성과를 보였다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201615952962256
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 배깅,부도 예측,앙상블,유전자 알고리즘,Bagging,Bankruptcy Prediction,Ensemble,Genetic Algorithms