한국광학회 양자광학 및 양자정보 분과
기관명 | NDSL |
---|---|
저널명 | 광학과 기술 = Optical science and technology |
ISSN | 1226-4520, |
ISBN |
저자(한글) | |
---|---|
저자(영문) | |
소속기관 | |
소속기관(영문) | |
출판인 | |
간행물 번호 | |
발행연도 | 2015-01-01 |
초록 | MFCC는 음성 신호 처리에서 귀중한 특징 벡터들 중 하나이다. MFCC에서 명백한 결점은 푸리에 변환의 크기를 취함에 의해 위상 정보가 손실된다는 것이다. 이 논문에서 우리는 푸리에 변환의 실수부와 허수부 크기를 따로 취급함으로써 위상 정보를 활용하는 방법을 생각한다. 퍼지 벡터 양자화와 은닉 마코브 모델을 이용한 음성인식에 이 방법을 적용함으로써, 종전 방법에 비해 음성 인식 오류율을 줄일 수 있음을 보인다. 우리는 또한 수치해석을 통하여, FFT의 실수부와 허수부 각각에서 6개의 성분을 취하여 모두 12개의 MFCC 성분을 사용하는 것이 음성인식에 최적임을 보인다. |
원문URL | http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201536449292485 |
첨부파일 |
과학기술표준분류 | |
---|---|
ICT 기술분류 | |
DDC 분류 | |
주제어 (키워드) |