기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

퍼지관계 기법과 인공신경망 기법을 이용한 포항지역의 산사태 취약성 예측 기법 비교 연구

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 자원환경지질 = Economic and environmental geology
ISSN 1225-7281,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 김진엽,박혁진
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2013-01-01
초록 산사태는 지형, 지질, 임상, 토양 등과 같은 다양한 요인들이 복합적으로 작용하여 발생한다. 따라서 산사태 발생위치와 산사태 유발 요인 사이의 상관관계를 파악할 수 있는 다양한 분석 기법이 사용되고 있으며 본 연구에서는 산사태 위험지역을 정량적으로 예측할 수 있는 효과적인 기법을 제안하고자 퍼지관계 기법과 인공신경망 기법을 이용하여 포항지역의 산사태 취약성을 분석하였다. 취약성 분석을 위해 먼저 산사태 위치를 파악하여 현황도를 작성하였으며, 산사태 발생과 관련 있는 11개의 요인들에 대한 공간 데이터베이스를 구축하였다. 퍼지관계 기법에서는 cosine amplitude method를 이용해 각 요인 별 퍼지 소속 함수 값을 획득하고 퍼지관계 함수 연산을 이용하여 취약성도를 작성하였다. 인공신경망 기법에서는 오류 역전파 알고리즘을 이용하여 산사태와 관련 요인들 간의 상대적 가중치를 결정하고 취약성도를 작성하였다. 두 기법으로 도출된 산사태 취약성도의 ROC(Receiver Operating Characteristic)와 AUC(Area Under the Curve)를 통한 검증 결과는 82.18%와 87.4%로 나타났다. 퍼지 관계 및 인공신경망 기법 모두 높은 예측 정확도를 보여 취약성 분석 기법으로서의 적용 가능성이 있는 것으로 분석되었다. 한편 본 연구지역의 경우 인공신경망 기법이 퍼지관계 기법에 비해 좀 더 나은 예측 정확도를 보이는 것으로 분석되었다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201333651559296
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 퍼지관계,인공신경망,산사태 취약성,퍼지소속값,포항,fuzzy relationship,artificial neural network,landslide susceptibility,fuzzy membership value,Pohang