기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

온라인 뉴스 제목 분석을 통한 특정 장소 이벤트 성과 예측을 위한 형태소 분석 방법

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 한국전자거래학회지 = The Journal of Society for e-Business Studies
ISSN 2288-3908,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 최석재,이재웅,권오병
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2016-01-01
초록 공개된 데이터인 온라인 뉴스 기사 중 상당수는 도시와 같은 특정 장소에서 발생하는 이벤트에 관련된 사실과 의견을 담고 있어 독자의 의사 결정에 영향을 끼친다. 따라서 대량의 인터넷 뉴스 기사를 분석하면 향후 사람들이 특정 이벤트에 대하여 어떠한 선택을 할지 예상할 수 있을 것이다. 이에 본 연구는 온라인 뉴스 기사 제목을 형태소 분석하여 특정 장소에서 이루어질 이벤트의 성과를 사전에 예측하는 방법을 제안하고자 한다. 기사 제목은 기사의 가장 핵심적인 내용을 담고 있어 본문보다 사실과 의견이 더 정확하게 발현될 뿐 아니라, 모바일 환경에서는 기사 본문보다 더 큰 영향력을 가지기 때문에 이벤트의 성과 예측에 효과적인 자료이다. 이에 인터넷 뉴스 기사의 제목을 수집하여 학습 데이터와 평가 데이터로 구분하고, 학습 데이터에서 유의한 극성을 보이는 형태소를 추출하여 전체 기사의 제목을 감성 분석하였다. 여기에 뉴스 기사가 갖는 특성이 반영될 수 있도록 기사 검색량과 기사 산출량 정보를 변인에 추가하여 이벤트 성과를 예측하는 알고리즘을 수립하였다. 그 결과 70.6%의 성공률로 성과를 예측하여 다른 비교 대상 분석 방법과 분명한 차이를 보였다. 도출된 이벤트 성과 예측 정보는 이벤트를 준비하는 기관 및 업체에서 예상 수요량을 결정할 때 도움을 줄 수 있을 것이다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201610659892002
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 텍스트 마이닝,비정형데이터,장소 마케팅,장소 이벤트,예상 수요,형태소 분석,Text Mining,Unstructured Data,Place Marketing,Place Event,Expected Demand,Morphological Analysis