초록 |
높은 수준의 지능형 영상 감시 시스템을 만족하기 위해서는 단순히 객체를 검출해서 분류하는 것뿐만 아니라 대상에 대한 정확한 신원 정보까지 확인할 수 있어야 한다. 사람을 구별하는 대표적인 얼굴 인식은 얼굴 자체의 가변성뿐만 아니라 조명, 배경, 카메라의 각도와 같은 외적요인에 따라 인식률의 변화가 발생한다. 본 논문에서는 다양한 실험을 통해 거리 변화에 의한 얼굴 영상의 크기 변화에 강인한 얼굴 인식 방법을 분석한다. 얼굴 인식 실험은 1m~5m에서 추출한 실제 거리별 얼굴 영상으로 이루어졌다. 실험결과, 1인당 학습 영상의 수가 많을 경우는 얼굴 특징 추출 방법으로 LDA를 사용한 방법이 전체 평균 75.4%로 가장 우수한 성능을 나타냈다. 하지만 1인당 학습 영상의 수가 5장 이하가 될 때는 CNN을 사용한 방법이 69.8%로 가장 우수한 성능을 나타냈다. 또한, 저해상도 얼굴 인식의 경우 얼굴 영상의 크기가 $15{ times}15$ 보다 작아지면 인식률이 급격히 감소함을 확인했다. |