기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

신경망 모델로 구성한 동해 울릉분지 표층 이산화탄소 분압과 변동성

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 바다 : 한국해양학회지
ISSN 1226-2978,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 박소예나,이동섭,조영헌
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2016-01-01
초록 동해 표층 해수에서 측정한 이산화탄소 분압( $pCO_2$ )에 대해 기 확보된 자료는 해양-대기간 $CO_2$ 교환율을 정량화하고자 통계 기법을 적용하기에는 부족한 편이다. 이를 보완하기 위해 위성자료를 이용하여 관측이 이루어지지 않은 해역의 $pCO_2$ 를 신경망모델을 이용하여 채워 넣는(mapping) 연구를 시도하였다. 본 연구는 동해에서 현장관측자료가 가장 많이 축적된 울릉분지를 대상으로 2003년부터 2012년까지의 표층 $pCO_2$ 자료와, Aqua 위성의 MODIS 센서로 관측한 해표면 온도(SST)와 엽록소(chlorophyll) 자료, 경위도 자료로 신경망모델을 구축하여 $pCO_2$ 분포도 작성과 변동성을 추정하고자 하였다. 신경망모델의 학습은 $pCO_2$ 관측자료와 모델결과값의 상관도가 95% 이상을 달성하도록 하였다. 모델 결과의 평균제곱근오차(RMSE)는 $19.2{ mu}atm$ 으로 관측자료의 변동 크기와 비교해서 훨씬 작은 수준이었다. SST와 chlorophyll에 연관된 $pCO_2$ 의 변동성을 살펴보면 chlorophyll 보다는 SST에 대해 더욱 강한 음의 상관 관계를 보였다. 모델이 출력한 $pCO_2$ 의 변동성은 SST가 내려감에 따라 커지는 경향을 보였다. $15^{ circ}C$ 이하에서는 $pCO_2$ 변동성에 대한 SST와 chlorophyll의 기여도가 뚜렷하게 나타났다. 반면 SST가 $15^{ circ}C$ 이상일 경우에는 $pCO_2$ 변동성은 SST와 chlorophyll의 변화에 대해 그리 민감하게 반응하지 않았다. 신경망모델 출력값으로 추정한 2003-2014년 사이의 울릉분지 표층수의 연평균 $pCO_2$ 증가율은 $0.8{ mu}atm$ 이었다. 신경망 모델이 울릉분지의 $pCO_2$ 에 대해 이전 연구보다 해상력과 오차가 향상된 $pCO_2$ 채워넣기를 가능케 해 준 점에 비추어 볼 때 국제정세에 따라 전역 관측이 수월하지 않은 동해의 탄소순환을 이해하는데 유용한 도구로 쓰일 수 있을 것으로 판단된다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201609562997842
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) lt,TEX gt,$pCO_2$ lt,/TEX gt,. neural network model,mapping,Ulleung Basin,East Sea