기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

신경망 모델과 확률 모델의 풍수해 예측성능 비교

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 정보처리학회논문지. The KIPS transactions. Part B. Part B
ISSN 1598-284x,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글)
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2011-01-01
초록 최근 급증하는 기상이변 및 기후온난화 현상은 풍수로 인한 피해를 더욱 가속시키고 있어 풍수해 발생가능성을 미리 예측하여 선제적으로 대응할 방안 마련이 필요하다. 재난 재해의 위험성 분석은 주로 확률 통계기법에 기반한 수식모델 연구가 주류를 이루고 있고 소방방재청 국립방재연구소에서 구축한 태풍위원회 재해정보시스템(TCDIS: Typhoon Committee Disaster Information System) 또한 지역별 풍수해 위험성 분석에 확률모델을 활용하고 있다. 본 논문에서는 경험적 패턴인식에 탁월한 성능을 가진 신경망 알고리즘을 활용하여 개발한 풍수해 예측모델을 소개하고 이 모델과 TCDIS의 KDF 확률밀도함수를 이용한 풍수해 예측모델의 성능 비교 결과를 제시하여 기존 TCDIS의 위험성 분석기능에 신경망 모델을 적용함으로써 시스템의 강건성과 예측 정확도 향상이 가능함을 보이고자 한다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201133549753841
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 풍수해 예측,신경망,패턴인식,모델 최적화,확률밀도함수,Damage from Storm and Flood,Prediction of Damage,Neural Network,Pattern Recognition,Model Optimization,Kernel Density Function