기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

강인한 음성인식을 위한 극점 필터링 및 스케일 정규화를 이용한 켑스트럼 특징 정규화 방식

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 한국음향학회지= The journal of the acoustical society of Korea
ISSN 1225-4428,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 최보경,반성민,김형순
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2015-01-01
초록 본 논문에서는 Cepstral Mean Normalization(CMN)과 Cepstral Mean and Variance Normalization(CMVN) 프레임워크에서 극점 필터링(pole filtering) 개념을 Mel-Frequency Cepstral Coefficient(MFCC) 특징 벡터에 적용한다. 또한 분산 정규화를 대신하여 스케일 정규화를 사용하는 Cepstral Mean and Scale Normalization(CMSN)의 성능을 잡음 환경 음성인식 실험을 통해 평가한다. CMN과 CMVN은 보통 발화 단위로 수행되기 때문에 짧은 발화의 경우 특징에 대한 평균과 분산의 추정 신뢰도가 보장되지 않는 문제점을 가지는데, 극점 필터링과 스케일 정규화 방식을 적용함으로 이러한 문제점을 보완할 수 있다. Aurora 2 데이터베이스를 이용한 실험 결과, 극점 필터링과 스케일 정규화를 결합한 특징 정규화 방식의 성능이 가장 높은 성능 향상을 보인다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201523964822197
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 음성인식,특징 정규화,Speech recognition,Feature normalization