기업조회

본문 바로가기 주메뉴 바로가기

논문 기본정보

Methodology for Issue-related R D Keywords Packaging Using Text Mining

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 Journal of Internet Computing and Services = 인터넷정보학회논문지
ISSN 1598-0170,2287-1136
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) Hyun, Yoonjin,Shun, William Wong Xiu,Kim, Namgyu
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 2015-01-01
초록 빅데이터 기술에 대한 관심이 급증함에 따라, 소셜 미디어를 통해 유통되는 방대한 양의 비정형 데이터를 분석하고자 하는 시도가 활발히 이루어지고 있다. 이에 따라서 텍스트 형태의 비정형 데이터 분석을 통해 의미 있는 정보를 찾고자 하는 시도가 비즈니스 영역뿐 아니라, 정치, 경제, 문화 등 다양한 영역에서 이루어지고 있다. 특히 최근에는 여러 현안 및 이슈들을 발굴하여 이를 의사결정에 활용하고자 하는 시도가 활발히 이루어지고 있다. 이처럼 빅데이터 분석을 통해 국가현안이나 이슈를 발굴하고자 하는 시도가 꾸준히 이루어져왔음에도 불구하고, 국가현안 및 이슈로부터 이와 관련된 R D 문서를 효율적으로 제공하는 방안은 마련되지 않고있다. 이는 사용자들이 인식하는 현안 키워드와 실제 사용되는 R D 키워드 사이의 이질성이 존재하기 때문이다. 따라서 현안 및 R D키워드간의 이질성을 극복하기 위한 중간 장치가 필요하며, 이 중간 장치를 통해 각 현안 키워드와 R D 키워드간에 적절한 대응이 이루어져야 한다. 이를 위해 본 연구에서는 (1) 현안 키워드 추출을 위한 하이브리드 방법론, (2) 현안 대응 R D 정보 패키징 방법론, 그리고 (3) R D 관점에서의 연관 현안 네트워크 구축 방법론의 총 세 가지 방법론을 제안한다. 제안하는 방법론은 텍스트 마이닝, 소셜네트워크 분석, 그리고 연관 규칙 마이닝 등의 데이터 분석 기법들을 활용하여 수행하였으며, 그 결과, (1)에 의한 키워드 보강률은 42.8%로 나타났으며, (2)의 경우, 현안 키워드와 R D 키워드간 다수의 연관 규칙이 나타났다. (3)의 경우는 현재 진행 중에 있으며, 향후 가시적 성과를 낼 수 있을 것으로 예상된다.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO201515338946250
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드) 연관 규칙 마이닝,키워드 매칭,소셜네트워크 분석,텍스트 마이닝,토픽 분석,Association Rules Mining,Keyword Matching,Social Network Analysis,Text Mining,Topic Analysis